There’s a saying in data science: Garbage In, Garbage Out (or GIGO, if you prefer). The most advanced formulas and models won’t provide outputs worth a dead cat if you don’t have high quality inputs. When it comes to something as difficult and uncertain as feature planning and estimation, that’s quadruply so. In this post I’m going to walk you through the system I’ve used successfully, how it works, and why. And it’s all based on the counter part to the story points from Part 5, user stories.
